Part Number Hot Search : 
11EWA LYT672 D68H8D10 LYT672 PI6C180B 16374G LYT672 96547
Product Description
Full Text Search
 

To Download AD8646 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  24 mhz rail-to-rail dual amplifier AD8646 rev. 0 information furnished by analog devices is believed to be accurate and reliable. however, no responsibility is assumed by analog devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. specifications subject to change without notice. no license is granted by implication or otherwise under any patent or patent rights of analog devices. trademarks and registered trademarks are the property of their respective owners. one technology way, p.o. box 9106, norwood, ma 02062-9106, u.s.a. tel: 781.329.4700 www.analog.com fax: 781.461.3113 ?2007 analog devices, inc. all rights reserved. features offset voltage: 2.5 mv maximum single-supply operation: 2.7 v to 5.5 v low noise: 8 nv/hz wide bandwidth: 24 mhz slew rate: 12 v/s short-circuit output current: 150 ma no phase reversal low input bias current: 1 pa low supply current: 2 ma maximum unity gain stable applications battery-powered instruments multipole filters adc front ends sensors barcode scanners asic input or output amplifiers audio amplifiers photodiode amplifiers datapath/mux/switch control pin configuration outa 1 ?ina 2 +ina 3 v? 4 v+ 8 outb 7 ?inb 6 +inb 5 AD8646 top view (not to scale) 06527-001 figure 1. general description the AD8646 is a dual, rail - to-rail, input and output, single- supply amplifier featuring low offset voltage, wide signal bandwidth, low input voltage, and low current noise. the combination of 24 mhz bandwidth, low offset, low noise, and very low input bias current makes these amplifiers useful in a wide variety of applications. filters, integrators, photodiode amplifiers, and high impedance sensors all benefit from the combination of performance features. ac applications benefit from the wide bandwidth and low distortion. this amplifier offers high output drive capability, which is excellent for audio line drivers and other low impedance applications. applications include portable and low powered instrumenta- tion, audio amplification for portable devices, portable phone headsets, barcode scanners, and multipole filters. the ability to swing rail to rail at both the input and output enables designers to buffer cmos adcs, dacs, asics, and other wide output swing devices in single-supply systems.
AD8646 rev. 0 | page 2 of 12 table of contents features .............................................................................................. 1 applications....................................................................................... 1 pin configuration............................................................................. 1 general description ......................................................................... 1 revision history ............................................................................... 2 specifications..................................................................................... 3 absolute maximum ratings ............................................................5 thermal resistance .......................................................................5 esd caution...................................................................................5 typical performance characteristics ..............................................6 outline dimensions ....................................................................... 12 ordering guide .......................................................................... 12 revision history 8 /07revision 0: initial version
AD8646 rev. 0 | page 3 of 12 specifications v dd = 5 v, v cm = v dd /2, t a = +25 o c, unless otherwise noted. table 1. parameter symbol conditions min typ max unit input characteristics offset voltage v os v cm = 2.5 v 0.6 2.5 mv ?40c < t a < +125c 3.2 mv offset voltage drift v os /t ?40c < t a < +125c 1.8 7.5 v/c input bias current i b 0.3 1 pa ?40c < t a < +85c 50 pa ?40c < t a < +125c 550 pa input offset current i os 0.1 0.5 pa ?40c < t a < +85c 50 pa ?40c < t a < +125c 250 pa input voltage range v cm 0 5 v common-mode rejection ratio cmrr v cm = 0 v to 5 v 67 84 db large signal voltage gain a vo r l = 2 k, v o = 0.5 v to 4.5 v 104 116 db output characteristics output voltage high v oh i out = 1 ma 4.98 4.99 v ?40c < t a < +125c 4.90 i out = 10 ma 4.85 4.92 v ?40c < t a < +125c 4.70 v output voltage low v ol i out = 1 ma 8.4 20 mv ?40c < t a < +125c 40 mv i out = 10 ma 78 145 mv ?40c < t a < +125c 200 mv output current i out short circuit 120 ma closed-loop output impedance z out at 1 mhz, a v = 1 5 power supply power supply rejection ratio psrr v dd = 2.7 v to 5.0 v 63 80 db supply current per amplifier i sy 1.5 1.9 ma ?40c < t a < +125c 2.25 ma dynamic performance slew rate sr r l = 2 k 11 v/s gain bandwidth product gbp 27 mhz phase margin ? m 77 degrees noise performance peak-to-peak noise e n p-p 0.1 hz to 10 hz 2.3 v voltage noise density e n f = 1 khz 8 nv/hz f = 10 khz 6 nv/hz channel separation cs f = 10 khz ?129 db f = 100 khz ?119 db total harmonic distortion plus noise thd+n v p-p = 0.1 v, r l = 600 , f = 25 khz, t a = 25c a v = +1 0.010 % a v = ?10 0.021 %
AD8646 rev. 0 | page 4 of 12 v dd = 2.7 v, v cm = v dd /2, t a = +25 o c, unless otherwise noted. table 2. parameter symbol conditions min typ max unit input characteristics offset voltage v os v cm = 1.35 v 0.6 2.5 mv ?40c < t a < +125c 3.2 mv offset voltage drift v os /t ?40c < t a < +125c 1.5 7.0 v/c input bias current i b 0.2 1 pa ?40c < t a < +85c 50 pa ?40c < t a < +125c 550 pa input offset current i os 0.1 0.5 pa ?40c < t a < +85c 50 pa ?40c < t a < +125c 250 pa input voltage range v cm 0 2.7 v common-mode rejection ratio cmrr v cm = 0 v to 2.7 v 62 79 db large signal voltage gain a vo r l = 2 k, v o = 0.5 v to 2.2 v 95 107 db output characteristics output voltage high v oh i out = 1 ma 2.65 2.68 v ?40c < t a < +125c 2.60 v output voltage low v ol i out = 1 ma 11 25 mv ?40c < t a < +125c 30 mv output current i out short circuit 63 ma closed-loop output impedance z out at 1 mhz, a v = 1 5 power supply power supply rejection ratio psrr v dd = 2.7 v to 5.0 v 63 80 db supply current per amplifier i sy 1.6 1.9 ma ?40c < t a < +125c 2.25 ma dynamic performance slew rate sr r l = 2 k 11 v/s r l = 10 k gain bandwidth product gbp 26 mhz phase margin ? m 53 degrees noise performance peak-to-peak noise e n p-p 0.1 hz to 10 hz 2.3 v voltage noise density e n f = 1 khz 8 nv/hz f = 10 khz 6 nv/hz channel separation cs f = 10 khz ?129 db f = 100 khz ?121 db
AD8646 rev. 0 | page 5 of 12 absolute maximum ratings table 3. parameter rating supply voltage 6 v input voltage gnd to v dd differential input voltage 3 v output short circuit to gnd indefinite storage temperature range ?65c to +150c operating temperature range ?40c to +125c lead temperature (soldering 60 sec) 300c junction temperature 150c stresses above those listed under absolute maximum ratings may cause permanent damage to the device. this is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. exposure to absolute maximum rating conditions for extended periods may affect device reliability. thermal resistance ja is specified for the worst-case conditions, that is, a device soldered in a circuit board for surface-mount packages. table 4. thermal resistance package type ja jc unit 8-lead soic 121 43 c/w 8-lead msop 210 45 c/w esd caution
AD8646 rev. 0 | page 6 of 12 typical performance characteristics 300 250 200 150 100 50 0 ?2.0 2.01.51.00.5 0 ?0.5 ?1.0 ?1.5 number of amplifiers v os (mv) v sy = 2.7v v cm = 1.35v t a = 25c 2244 amplifiers 06527-002 figure 2. input offset voltage distribution 35 30 25 20 15 10 5 0 07 654321 number of amplifiers tcv os (v/c) v sy = 2.7v ?40c < t a < +125c 06527-003 figure 3. v os drift (tcv os ) distribution 800 600 400 200 0 ?200 ?400 ?600 ?800 02 . 7 2.42.1 1.8 1.51.20.90.6 0.3 v os (v) v cm (v) v sy = 2.7v t a = 25c 06527-004 figure 4. input offset voltage vs. input common-mode voltage 200 180 160 140 120 100 80 60 40 20 0 ?2.0 2.01.51.00.5 0 ?0.5 ?1.0 ?1.5 number of amplifiers v os (mv) v sy = 5v v cm = 2.5v t a = 25c 2244 amplifiers 06527-005 figure 5. input offset voltage distribution 35 30 25 20 15 10 5 0 08 7654321 number of amplifiers tcv os (v/c) v sy = 5v ?40c < t a < +125c 06527-006 figure 6. v os drift (tcv os ) distribution 1000 800 600 400 200 0 ?200 ?400 ?600 ?800 ?1000 05 4 3 2 1 v os (v) v cm (v) v sy = 5v t a = 25c 06527-007 figure 7. input offset voltage vs. input common-mode voltage
AD8646 rev. 0 | page 7 of 12 10000 0.1 1 10 100 1000 0.001 100 10 1 0.1 0.01 output saturation voltage (mv) load current (ma) v sy = 2.7v t a = 25c v dd ? v oh v ol 06527-008 figure 8. output saturation voltage vs. load current 25 0 5 10 15 20 ?40 ?25 ?10 5 20 35 50 65 80 95 110 125 output saturation voltage (mv) temperature (c) v sy = 2.7v i l = 1ma v dd ? v oh v ol 06527-009 figure 9. output saturati on voltage vs. temperature 300 250 0 50 100 150 200 0.50 2.00 1.75 1.50 1.25 1.00 0.75 input bias current (pa) common-mode voltage (v) v sy = 2.7v t a = 125c 06527-010 figure 10. input bias current vs. common-mode voltage 10000 0.1 1 10 100 1000 0.001 1000 100 10 1 0.1 0.01 output saturation voltage (mv) load current (ma) v sy = 5v t a = 25c v dd ? v oh v ol 06527-011 figure 11. output saturation voltage vs. load current 120 0 20 60 40 80 100 ?40 ?25 ?10 5 20 35 50 65 80 95 110 125 output saturation voltage (mv) temperature (c) v sy = 5v v sy ? v oh = 10ma v sy ? v oh = 1ma v ol = 10ma v ol = 1ma 06527-012 figure 12. output saturation voltage vs. temperature 300 0 50 150 100 200 250 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 input bias current (pa) input common-mode voltage (v) v sy = 5v t a = 125c 06527-013 figure 13. input bias current vs. common-mode voltage
AD8646 rev. 0 | page 8 of 12 80 ?60 ?40 0 ?20 40 20 60 180 ?135 ?90 0 ?45 90 45 135 1 10 100 1k 10k 100k gain (db) phase (degrees) frequency (khz) v sy = 2.7v r l = 1k ? c l = 10pf t a = 25c 06527-014 figure 14. open-loop gain and phase vs. frequency 60 ?60 ?40 0 ?20 40 20 1k 10k 100k 1m 10m 100m closed-loop gain (db) frequency (hz) v sy = 2.7v t a = 25c a v = 100 a v = 10 a v = 1 06527-015 figure 15. closed-loop gain vs. frequency 250 0 50 150 100 200 1 10 100 1k 10k 1m 100k z out ( ? ) frequency (khz) v sy = 2.7v t a = 25c a v = 1 a v = 10 a v = 100 06527-016 figure 16. z out vs. frequency 80 ?60 ?40 0 ?20 40 20 60 180 ?135 ?90 0 ?45 90 45 135 1 10 100 1k 10k 100k gain (db) phase (degrees) frequency (khz) v sy = 5v r l = 1k ? c l = 10pf t a = 25c 06527-017 figure 17. open-loop gain and phase vs. frequency 60 ?60 ?40 0 ?20 40 20 1k 10k 100k 1m 10m 100m closed-loop gain (db) frequency (hz) v sy = 5v t a = 25c a v = 100 a v = 10 a v = 1 06527-018 figure 18. closed-loop gain vs. frequency 120 0 20 80 60 40 100 1 10 100 1k 10k 1m 100k z out ( ? ) frequency (khz) v sy = 5v t a = 25c a v = 1 a v = 10 a v = 100 06527-019 figure 19. z out vs. frequency
AD8646 rev. 0 | page 9 of 12 100 0 20 80 60 40 1k 100m 10m 1m 100k 10k cmrr (db) frequency (hz) v sy = 2.7v t a = 25c 06527-020 figure 20. cmrr vs. frequency 100 90 80 70 60 50 40 30 20 10 0 ?10 ?20 1k 100m 10m 1m 100k 10k psrr (db) frequency (hz) v sy = 2.7v t a = 25c +psrr ?psrr 06527-021 figure 21. psrr vs. frequency 60 50 40 30 20 10 0 1 1000 100 10 overshoot (%) c load (pf) v sy = 1.35v t a = 25c +overshoot ?overshoot 06527-022 figure 22. small signal overshoot vs. load capacitance 100 0 20 80 60 40 1k 100m 10m 1m 100k 10k cmrr (db) frequency (hz) v sy = 5v t a = 25c 06527-023 figure 23. cmrr vs. frequency 100 80 60 40 20 0 1 100k 10k 1k 100 10 psrr (db) frequency (khz) v sy = 5v t a = 25c +psrr ?psrr 06527-024 figure 24. psrr vs. frequency 60 50 40 30 20 10 0 1 1000 100 10 overshoot (%) c load (pf) v sy = 2.5v t a = 25c +overshoot ?overshoot 06527-025 figure 25. small signal overshoot vs. load capacitance
AD8646 rev. 0 | page 10 of 12 06527-026 v sy = 2.7v, v cm = 1.35v, v in = 100mv p-p, t a = 25c, r l = 10k ? , c l = 100pf (200ns/div) (50mv/div) figure 26. 2.7 v small signal transient response 06527-027 v sy = 2.7v, v in = 2v p-p, t a = 25c, r l = 10k ? , c l = 100pf (200ns/div) (2v/div) figure 27. 2.7 v large signal transient response 0.08 0.07 0.06 0.05 0.04 0.03 0.02 0.01 0 10 100 1k 10k 100k thd + n (%) frequency (hz) v sy = 2.5v r l = 600 ? a v = 1 t a = 25c 06527-028 figure 28. thd + noise vs. frequency 06527-029 v sy = 5v, v cm = 2.5v, v in = 100mv p-p, t a = 25c, r l = 10k ? , c l = 100pf (200ns/div) (50mv/div) figure 29. 5 v small signal transient response 06527-030 v sy = 5v, v in = 4v p-p, t a = 25c, r l = 10k ? , c l = 100pf (200ns/div) (2v/div) figure 30. 5 v large signal transient response 0.08 0.07 0.06 0.05 0.04 0.03 0.02 0.01 0 10 100 1k 10k 100k thd + n (%) frequency (hz) v sy = 2.5v r l = 600 ? a v = ?10 t a = 25c 06527-031 figure 31. thd + noise vs. frequency
AD8646 rev. 0 | page 11 of 12 20 18 16 14 12 10 8 6 4 2 0 100 1k 10k 100k voltage noise density (nv/ hz) frequency (hz) v sy = 5v t a = 25c 06527-032 1000 100 10 1 0.1 25 125 105 80 65 45 input bias current (pa) temperature (c) v dd = 5v 06527-035 figure 32. voltage noise density vs. frequency figure 35. input bias current vs. temperature 4000 3500 3000 2500 2000 1500 1000 500 0 05 4.5 4.03.53.02.52.01.51.00.5 i sy , both amplifiers (a) v sy (v) 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0 100 1k 10k output swing (v p-p) frequency (khz) v sy = 5v v in = 4.9v a v = 1 r l = 10k ? t a = 25c 06527-033 . 0 t a = 25c both amps 06527-036 figure 36. supply current vs. supply voltage figure 33. maximum output swing vs. frequency m4.00s input referred noise (1v/div) a ch1 0.00v 2.3v p-p v sy = 2.7v to 5v t a = 25c 0 6527-034 0 ?20 ?40 ?60 ?80 ?100 ?120 1k 10k 100k channel separation (db) frequency (hz) 06527-037 v in = 2v p-p v in = 0.5v p-p v sy = 5v r l = 2k ? a v = ?100 t a = 25c figure 34. 0.1 hz to 10 hz voltage noise figure 37. channel separation
AD8646 rev. 0 | page 12 of 12 outline dimensions controlling dimensions are in millimeters; inch dimensions (in parentheses) are rounded-off millimeter equivalents for reference only and are not appropriate for use in design. compliant to jedec standards ms-012-a a 012407-a 0.25 (0.0098) 0.17 (0.0067) 1.27 (0.0500) 0.40 (0.0157) 0.50 (0.0196) 0.25 (0.0099) 45 8 0 1.75 (0.0688) 1.35 (0.0532) seating plane 0.25 (0.0098) 0.10 (0.0040) 4 1 85 5.00 (0.1968) 4.80 (0.1890) 4.00 (0.1574) 3.80 (0.1497) 1.27 (0.0500) bsc 6.20 (0.2441) 5.80 (0.2284) 0.51 (0.0201) 0.31 (0.0122) coplanarity 0.10 figure 38. 8-lead standard small outline package [soic_n] narrow body (r-8) dimensions shown in millimeters and (inches) compliant to jedec standards mo-187-aa 0.80 0.60 0.40 8 0 4 8 1 5 pin 1 0.65 bsc seating plane 0.38 0.22 1.10 max 3.20 3.00 2.80 coplanarity 0.10 0.23 0.08 3.20 3.00 2.80 5.15 4.90 4.65 0.15 0.00 0.95 0.85 0.75 figure 39. 8-lead mini small outline package [msop] (rm-8) dimensions shown in millimeters ordering guide model temperature range package description package option branding AD8646arz 1 ?40c to +125c 8-lead soic_n r-8 AD8646arz-reel 1 ?40c to +125c 8-lead soic_n r-8 AD8646arz-reel7 1 ?40c to +125c 8-lead soic_n r-8 AD8646armz-r2 1 ?40c to +125c 8-lead msop rm-8 a1v AD8646armz-reel 1 ?40c to +125c 8-lead msop rm-8 a1v 1 z = rohs compliant part. ?2007 analog devices, inc. all rights reserved. trademarks and registered trademarks are the property of their respective owners. d06527-0- 8/07(0)


▲Up To Search▲   

 
Price & Availability of AD8646

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X